翻訳と辞書 |
Data stream clustering : ウィキペディア英語版 | Data stream clustering In computer science, data stream clustering is defined as the clustering of data that arrive continuously such as telephone records, multimedia data, financial transactions etc. Data stream clustering is usually studied as a streaming algorithm and the objective is, given a sequence of points, to construct a good clustering of the stream, using a small amount of memory and time. == History == Data stream clustering has recently attracted attention for emerging applications that involve large amounts of streaming data. For clustering, k-means is a widely used heuristic but alternate algorithms have also been developed such as k-medoids, CURE and the popular BIRCH. For data streams, one of the first results appeared in 1980 but the model was formalized in 1998.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Data stream clustering」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|